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Motivation

• We would like to have a first principles derivation of the
mechanisms and time scales necessary for the isotropization and
equilibration of a quark-gluon plasma.

• In addition to equilibration via 2-2 elastic scattering (super slow)
one needs to include inelastic processes, e.g. bremstrahlung 2-3
(and 3-2) processes, and the effect of background fields.

• In equilibrium the background field (soft modes) only serves to
screen the interaction (Debye screening). However, in a
non-equilibrium setting the background field can have non-trivial
dynamics.

• Consider, for example, a spatially homogeneous plasma which
has been initialized such that it has a “temperature” anisotropy.

• In such an anisotropic plasmas new collective modes
corresponding to electro-/chromodynamic instabilities appear.
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Why anisotropic distribution functions?

Because of the natural expansion of the system the gluon distribution
functions created during relativistic heavy ion collisions are generically
locally anisotropic in momentum space.

<pT > ∼ Qs (nuclear saturation scale)

<pL > ∼ 1/τ (free streaming)

small plarge p large p

τ >> Qs

-1
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Current Filamentation
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Abelian Plasma

0 10 20 30 40 50

m  t

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

(E
n
e
rg

y
 D

e
n
s
it
y
)/

(m
  4 /g

2
) 

B
T

B
z

E
T

E
z

8

8

Strong and Electroweak Matter 2006 – 12 May 2006 – p. 5/31



Collective Modes of an Isotropic QGP

The isotropic hard-thermal-loop (HTL) gluon propagator is given by

∆ij = (k2 − ω2 + ΠT )−1(δij − kikj/k2) −
k2

ω2
(k2 − ΠL)−1kikj/k2

with

ΠT (ω, k) =
m2

D

2

ω2

k2

[

1 −
ω2 − k2

2ωk
log

ω + k

ω − k

]

,

ΠL(ω, k) = m2
D

[

ω

2k
log

ω + k

ω − k
− 1

]

,

and mD ∝ gT .

lim
ω→0

ΠL(ω, k) = m2
D electric screening

lim
ω→0

ΠT (ω, k) = 0 no magnetic screening
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Collective Modes of an Isotropic QGP

In the isotropic case the only poles are at real timelike (ω > k)
momentum. In order to determine the dispersion relations for these
excitations we can then explicitly look for the poles in the propagator.

0 = k2 − ω2
T + ΠT (ωT , k)

0 = k2 − ΠL(ωL, k)

ω/k

Strong and Electroweak Matter 2006 – 12 May 2006 – p. 7/31



Anisotropic Gluon Polarization Tensor

In order to determine the HL gluon polarization we can use either
linearized three-dimensional kinetic theory (Boltzmann-Vlasov eq)

[v · DX , δn(p,X)] + gvµFµν(X)∂(p)
ν n(p) = 0

DµFµν = Jν = g

∫

p
vνδn(p,X)

or diagrammatically

= +Π
~ g ~ g 

~ 

~ 

hardp
hardp

hardp

hardp

In both cases the result for the retarded self-energy is

Πij
ab(K) = −g2δab

∫

p

vi∂lf(p)

(

δjl −
vjkl

K · V + iǫ

)
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The nature of the anisotropy

We assume that the anisotropic distribution function can be obtained
from an arbitrary isotropic distribution function by a change of its
argument.

f(p2) → f(p2 + ξ(p · n)2)

The polarization tensor can then be written as

Πij(K) = m2
D

∫

dΩ

4π
vi vl + ξ(v · n)nl

(1 + ξ(v · n)2)2

(

δjl −
vjkl

K · V + iǫ

)

where mD is the isotropic Debye mass

m2
D = −

g2

2π2

∫ ∞

0
dp p2 df(p2)

dp

n

k

^

θ
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New Mass Scales – ξ > 0
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Anisotropic Collective Modes ( ξ > 0)

Anisotropic poles (ξ > 0).
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Unstable Modes – ξ > 0
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Anisotropic HL Effective Action

Using the requirement of gauge invari-
ance it is possible to determine all
n-point functions.

SHL = −
g2

2

∫

x

∫

p

f(p)F a
µν(x)

(

pνpρ

(p · D)2

)

ab

F b µ
ρ (x)

= −
g2

2

∫

x

∫

p

f(p)Wµ(x, p̂)Wµ(x, p̂)

For example, from this we can obtain the anisotropic 3-gluon vertex

Γµνλ(k, q, r) =
g2

2

∫

p

∂f(p)

∂pβ
p̂µp̂ν p̂λ

(

rβ

p̂·q p̂·r
−

kβ

p̂·k p̂·q

)
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Real-Time Lattice Simulation

Numerically solve the equations of motion resulting from the HL
effective action on a space + velocity lattice.

jµ[A] = −g2

∫

p

1

2|p|
pµ ∂f(p)

∂pβ
W β(x;v)

with
[v · D(A)]Wβ(x;v) = Fβγ(A)vγ

and vµ = pµ/|p| = (1,v).

This has to be solved with

Dµ(A)Fµν = jν

where ν = 0 is the Gauss law constraint.
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~v-discretized equations of motion

Recall,

jν [A] = −g2

∫

p

1

2|p|
pν ∂f(p)

∂pβ
W β(x;v)

A closed set of gauge-covariant equations is obtained when the
angular integral over p̂ is discretized.

The full HL dynamics is then approximated by the following set of
equations

[v · D(A)]Wv = (avF 0µ + bvF zµ)vµ

Dµ(A)Fµν = jν =
1

N

∑

v

vνWv

which can be systematically improved by increasing N .
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3s × 3v Hard-loop results – ξ = 10
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A. Rebhan, P. Romatschke, M. Strickland, hep-ph/0505261
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3s × 3v Hard-loop results – Nonabelian cascade

P. Arnold and G. Moore, hep-ph/0509206; hep-ph/0509226.
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3s × 3v - Larger Anisotropies - ξ = 100
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A model of the effect of collisions

We can model the collisional kernel by a Bhatnagar-Gross-Krook
(BGK) collision term resulting in a linearized Boltzmann-Vlasov
equation of the form

[V · DX , δf(p,X)] + gVµFµν∂(p)
ν f(p) = L (CBGK[f + δf ])

CBGK[f ] = −ν

(

f(p,X) −
N i(X)

N i
eq

feq(|p|)
)

where ν has dimensions of energy and represents the collisional
frequency.

For hard, O(1) direction changing interactions νhard/phard ∼ g4 log g and
for small-angle (θ ∼ g) deflections νsoft/phard ∼ g2 log g. Assuming the
later as an upper bound then ν ∼ 0.2mD when αs = 0.3.

B. Schenke, C. Greiner, M. Thoma, and MS, hep-ph/0603029.
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BGK Anisotropic Dispersion Relations
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Colored-Particle-in-Cell Simulations (CPIC)

Hard-loop approximation strictly only applies when there is a large
scale separation and weak-field limit (A ≪ phard/g).

What happens when one relaxes these assumptions? Let’s go back to
the transport equations and try to solve without linearization. Recall
the Vlasov equation

pµ[∂µ − gqaF a
µν∂

ν
p − gfabcA

b
µqc∂qa ]f(x, p, q) = 0

The Vlasov equation is coupled self-consistently to the Yang-Mills
equation for the soft gluon fields,

DµFµν = Jν = g

∫

d3p

(2π)3
dq q vνf(t,x,p, q)
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CPIC - Wong-Yang-Mills equations

Can be solved numerically by replacing the continuous single-particle
distribution f(x,p, q) by a large number of test particles:

f(x,p, q) =
1

Ntest

∑

i

δ(x − xi(t)) (2π)3δ(p − pi(t)) δ(qa − qa
i (t))

where xi(t), pi(t) and qa
i (t) are the coordinates, momentum, and

charge of an individual test particle.

dxi

dt
= vi

dpi

dt
= g qa

i (Ea + vi × Ba)

dqi

dt
= ig vµ

i [Aµ,qi]

Ja ν =
g

Ntest

∑

i

qa
i vν δ(x − xi(t))
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CPIC - Results
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A. Dumitru, Y. Nara, and M. Strickland, hep-ph/0604149
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CPIC - Ultraviolet Avalanche
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A. Dumitru, Y. Nara, and M. Strickland, hep-ph/0604149
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CPIC - Ultraviolet Avalanche
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Cycle of isotropization?
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Hard Expanding Loops (HEL)

Including expansion at late
times one can show

m∞(τ) ∝

√

Qs

τ

A(τ) ∝ e

R

τ

τ0
m∞(t)dt

∝ e
√

Qsτ

|p||p|/
TL

τ
iso ~ Q

s

-1 τ

1

(0.1-0.2 fm/c)

0

To include the effect of expansion at all times one must solve the
Boltzmann-Vlasov equation in an expanding metric using (τ, xi, η)
coordinates (A. Rebhan and P. Romatschke, hep-ph/0605064.):

p · D δfa|pµ = gpαF a
αβ∂β

(p)
f0(p⊥, pη)

1

τ
Dα

(

τFαβ
)

= jβ =
g

2

∫

d2p⊥dy

(2π)3
pβδf
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HEL ... a challenge ...
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Other recent related works of interest
• “The Unstable Glasma”, Paul Romatschke, Raju Venugopalan,

hep-ph/0605045.
• “Anomalous Viscosity of an Expanding Quark-Gluon Plasma”, M.

Asakawa, S.A. Bass, B. Müller, hep-ph/0603092
• Your name here!
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Conclusions
• Anisotropic plasmas are qualitatively different than isotropic ones.

An entirely new phenomena associated with unstable modes
appears.

• For relatively weak anisotropies 3 space × 3 velocity real-time
lattice simulations indicate that for non-abelian plasmas the soft
unstable modes “saturate” and the growth then becomes
power-law rather than exponential.

• However, for larger anisotropies it appears that exponential field
growth can continue simliar to an abelian plasma.

• Addition of collisions slows down growth of instabilities but for
realistic collisional frequencies instabilities are still present.

• Going beyond the hard-loop approximation by numerically solving
the Wong-Yang-Mills equations (CPIC) also shows rapid field
growth (but electric fields???) and an “ultraviolet avalanche”
accompanied with saturation.
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